

Comment on “Nutrition Labelling Policies: WHO Guideline”

October 11th 2024

We commend the WHO for developing a Guideline to support its Member States in formulating and implementing effective nutrition labeling policies. Our primary recommendation is to strengthen the Guideline by explicitly recommending **mandatory** front-of-package labeling (FOPL) systems comprised of **nutrient warning labels**. The Guideline should also explicitly recommend against the use of positive endorsement labels and of non-interpretive labels presenting raw numeric information as a standalone policy. Lastly, we suggest presenting the Guideline's recommendations as a **unified policy strategy** that includes nutrient declarations, FOPL, and nutrition and health claims guidelines as complementary components, rather than present them as independent policies.

Specific Recommendations

1. The Guideline should **explicitly recommend mandatory FOPL systems**. The current recommendation that FOPLs should be applied “universally” is unclear, as it does not specify what actions are necessary for achieving universal application. Real-world evidence consistently demonstrates that **voluntary FOPL systems fail to achieve universal application and are less effective**. Thus, to ensure adequate public health impact, the WHO should explicitly advise Member States to **adopt mandatory FOPL systems** and **recommend against the use of voluntary systems**.
 - Evidence from countries that have adopted voluntary FOPL systems, such as Belgium, France, Germany, Australia, and New Zealand, shows that labels are not consistently applied across all packaged products.¹⁻⁶ In contrast, Chile’s mandatory FOPL system has resulted in near-universal compliance, with 93% of all products designated as ‘high in’ nutrients of concern displaying the required FOPLs.⁷
 - Evidence from countries that have adopted voluntary FOPL systems also shows that voluntary labels are more frequently displayed on healthier products.^{1,3,4,8} This selective application can mislead consumers⁹⁻¹¹ and undermine the goal of providing accurate, easily comparable nutritional information across products.^{12,13}
 - Unlike mandatory systems, voluntary FOPL systems adopted throughout the world have not been shown to lead to meaningful levels of product reformulation by the food industry.¹²⁻¹⁶ For example, within a few years of the voluntary implementation of the Health Star Rating system, the sodium content of labeled products was reduced by only 1.4% in Australia and 4% in New Zealand, and the sugar content in New Zealand decreased by only 2.3%.¹⁷ In contrast, within a few years of Chile’s mandatory implementation of nutrient warning labels, the number of products across the food supply classified as ‘high in sodium’ dropped by 63%, and those classified as ‘high in sugar’ dropped by 25%.¹⁸
2. The Guideline should be **more specific about the types of interpretive FOPLs recommended**. Our assessment of the scientific literature is that **nutrient warning labels are supported by the strongest evidence base to date**.

- Nutrient warning labels are the only type of interpretive FOPL supported by real-world evidence demonstrating an association with improvements in the healthfulness of food purchases and dietary intake.^{19,20} Policy evaluations from countries like Chile, Peru, Uruguay, and Israel reveal that nutrient warning labels are used by a large portion of consumers,²¹⁻²⁴ lead to improvements in the nutritional quality of consumers' food purchases,^{19,25-27} and prompt manufacturers to reformulate a meaningful portion of their products to reduce amounts of nutrients of concern, including added sugars, sodium, and saturated fat.^{18,28,29}
- While nutrient warning labels may not always outperform other types of interpretive FOPLs across every outcome measured in experimental studies, they perform the best on the most critical outcomes for the prevention of diet-related diseases – i.e., reductions in the intake of the unhealthiest foods. Experimental studies show that nutrient warning labels are the most effective at reducing the amounts of added sugars, saturated fats, and sodium in products selected by consumers.^{9,30-34} Additionally, experimental studies consistently show that nutrient warning labels are easier for consumers to understand compared to other types of front-of-package labels (FOPLs), such as multiple traffic lights labels and summary indicator labels that provide a single metric for a product (e.g., overall numeric score, letter grade).³⁵⁻⁴⁵
- While there is ample experimental evidence demonstrating that other types of interpretive labels, including multiple traffic lights and summary indicator labels, are an improvement compared to the absence of any interpretive FOPLs, real-world evidence of their effectiveness remains extremely limited. Additionally, experimental studies show that summary indicator labels can create health-halo effects for higher-scoring products,^{34,35,46} while multiple traffic lights labels can send mixed messages (e.g., when a single product shows green for certain nutrients and red for others) and confuse consumers.^{9,39,42,47} For these reasons, we strongly recommend that the WHO not equate these labeling systems with nutrient warning labels in the Guideline.

3. The Guideline should **explicitly recommend against the use of endorsement labels** that signal products as “healthy” and only present positive information. While the Guideline references evidence showing that endorsement labels can create health-halo effects and mislead consumers, it stops short of clearly recommending against their use, and stronger guidance is necessary.

- Compared to other types of FOPL, there is very limited evidence showing that endorsement labels can have a positive impact on consumers' understanding of products' nutritional content or on the healthfulness of consumers' product selection.^{11,48-55}
- In general, positively framed labels may be interpreted as blanket endorsements to consume as much of a product as desired or to exclusively consume such product.^{11,46}
- Endorsement labels are applied to pre-packaged products, and thus do not encourage consumption of unpackaged products such as most fruits and vegetables,⁵⁶ which are the foundation of healthy dietary patterns.

4. The Guideline should provide **more detailed guidance on the importance of label design**. Member States should be informed that certain **graphic and linguistic elements** have been shown to enhance the salience and interpretability of FOPLs. Moreover, it is crucial to emphasize the importance of **testing different design elements across diverse population groups** to ensure FOPLs are well-understood by all.

- Experimental studies show that visual elements, such as icons and images, improve the effectiveness of FOPLs and are more easily understood by populations with lower literacy.^{32,57-61} The greater effectiveness of labels including visual elements is also supported by evidence from the tobacco field, in which there is a long history of using pictorial health warnings on cigarette packs, currently required in 138 countries.⁶²
- In experimental studies from different countries, shapes and colors associated with warnings or danger, such as octagons, triangles, black, red, and yellow, outperform more neutral shapes and colors.^{40,60,63-66}
- Attempts by food manufacturers to decrease the salience of FOPLs have been previously documented.⁶⁷ To prevent such attempts, governments can regulate FOPL size and placement. Experimental evidence suggests that placement in the top right corner of packages attracts the most consumer attention.^{68,69} Governments can also establish color-contrast requirements for a range of different types of packages or mandate a holding strip around labels to prevent manufacturers from trying to camouflage FOPLs.

5. The Guideline **should not state that FOPLs are not appropriate for foods directed at young children**. Commercially prepared baby foods and follow-up formulas are among the first foods high in added sugar introduced to young children, directly contradicting the WHO's recommendation that parents not feed foods with added sugar to children under two years old. FOPLs could help parents identify products high in nutrients of concern, reduce purchases of such products, and prompt manufacturers to reduce the amount of nutrients of concern added to products directed at infants and toddlers.

- Evidence from several countries shows that many commercially prepared baby foods and follow-up formulas are high in added sugars and sodium.⁷⁰⁻⁷³ Between 2010 and 2021, there was a 45% increase in sales of added sugars through products directed at infants and toddlers, from 697 billion grams to 1009 billion grams.⁷⁴
- Products directed at infants and toddlers commonly contain cosmetic additives whose effects on young children remain unknown. For instance, a study analyzing products sold in Southeast Asian countries found that around a third of products contained additives not permitted by the Codex Alimentarius' standards for foods suitable for children between 6 months and 3 years old.⁷⁵
- Health claims are common in follow-up formula packages,^{76,77} and studies suggest that such claims can mislead parents and increase product appeal.⁷⁸⁻⁸⁰

6. The term “nutrient declarations,” as defined in the Guideline, can refer to various types of labels, including both back-of-package (e.g., Nutrition Facts Panel) and front-of-package formats (e.g., Guideline Daily Amounts). This broad application can create confusion. Therefore, we recommend that the Guideline **more clearly define “nutrient declarations” as**

non-interpretive labels and emphasize that, although important for transparency about the product, such labels are **insufficient as a standalone policy** and should **be paired with interpretive FOPLs**.

- Interpreting food labels that display raw numeric nutrition information requires a high level of nutritional knowledge and mathematical skills. Thus, these labels are incompatible with evidence showing that consumers often make food purchasing decisions very quickly and without extensive “rational” processing.^{81–85} Additionally, these types of labels have been shown to be particularly challenging for individuals with lower education levels,^{86–91} and could ultimately contribute to health disparities.
- Studies from many different countries show that use and understanding of non-interpretive labels are very low,^{31,33,36,38–41,43,44,46,47,86,88,92–104} and there is little to no evidence that such labels influence dietary behavior.

7. We strongly support the WHO’s recommendation to protect consumers from deceptive nutrition and health claims. We suggest expanding this recommendation to protect consumers from **any type of claim shown to be deceptive**. Additionally, we suggest recommending that **restrictions on nutrition and health claims be integrated into FOPL systems** such that claims, even if not deceptive, are not permitted on products that carry warning labels.

- Experimental studies show that consumers are more likely to choose foods when they contain health and/or nutrition claims compared to the same foods without claims.^{78,105–107}
- Claims that are not directly or exclusively related to health and nutrition, such as “natural,” or “organic” claims, can still influence consumers’ perception of a product’s healthfulness in misleading ways.^{108–112}
- Products high in nutrients of concern often possess other nutritional attributes that manufacturers may wish to highlight, such as protein or micronutrient content. While these claims are not inherently deceptive, they may lead consumers to form inaccurate perceptions of the product’s overall healthfulness.^{109,113–115} Therefore, in a unified and cohesive policy strategy, claims, even if not deceptive, should not be permitted on products that exceed the thresholds for nutrients of concern that would require such products to carry warning labels.

Thank you for considering these recommendations and for your commitment to developing a Guideline to support Member States in developing and implementing effective nutrition labeling policies.

Sincerely,

Barry Popkin, PhD

W. R. Kenan Jr. Distinguished Professor, Department of Nutrition
Gillings School of Global Public Health
University of North Carolina at Chapel Hill

Christina Roberto, PhD

Mitchell J. Blutt and Margo Krody Blutt Presidential Associate Professor of Health Policy
Perelman School of Medicine
University of Pennsylvania

Shu Wen Ng, PhD

Professor and Distinguished Scholar in Public Health Nutrition, Department of Nutrition
Gillings School of Global Public Health
University of North Carolina at Chapel Hill

Lindsey Smith-Taillie, PhD

Associate Professor, Department of Nutrition
Gillings School of Global Public Health
University of North Carolina at Chapel Hill

Julia Wolfson, PhD MPP

Associate Professor, Human Nutrition Program
Department of International Health and Department of Health Policy and Management
Johns Hopkins Bloomberg School of Public Health

Jennifer Falbe, ScD MPH

Associate Professor of Nutrition and Human Development, Department of Human Ecology
University of California, Davis

Marissa Hall, PhD

Assistant Professor, Department of Health Behavior
Gillings School of Global Public Health
University of North Carolina at Chapel Hill

Anna Grummon, PhD

Assistant Professor, Department of Pediatrics
Stanford University School of Medicine

Alyssa Moran, ScD

Director of Policy and Research, Penn Center for Food and Nutrition Policy, Perelman School of Medicine at the University of Pennsylvania
Adjunct Assistant Professor, Department of Health Policy & Management, Johns Hopkins Bloomberg School of Public Health

Jennie Davis, PhD RDN

Postdoctoral Scholar, Institute for Global Nutrition
University of California, Davis

Aline D'Angelo Campos, MPP

PhD Candidate, Department of Health Behavior
Gillings School of Global Public Health
University of North Carolina at Chapel Hill

Ana Paula Richter, MPH MSc

PhD Candidate, Department of Health Behavior
Gillings School of Global Public Health
University of North Carolina at Chapel Hill

Brittany Lemmon, MS

PhD Candidate, Graduate Group in Epidemiology
University of California, Davis

Carolyn Chelius, MA

PhD Student, Department of Health Behavior
Gillings School of Global Public Health
University of North Carolina at Chapel Hill

Ethan Wolf, MPH

PhD Student, Epidemiology
University of California, Berkeley

Andrea M. Gil

PhD Student, Nutritional Biology
University of California, Davis

References

1. Jones A, Shahid M, Neal B. Uptake of Australia's Health Star Rating System. *Nutrients*. 2018;10(8):997. doi:10.3390/nu10080997
2. Mhurchu CN, Eyles H, Choi YH. Effects of a Voluntary Front-of-Pack Nutrition Labelling System on Packaged Food Reformulation: The Health Star Rating System in New Zealand. *Nutrients*. 2017;9(8):918. doi:10.3390/nu9080918
3. Vandevijvere S. Uptake of Nutri-Score during the first year of implementation in Belgium. *Arch Public Health*. 2020;78(1):107. doi:10.1186/s13690-020-00492-1
4. Fedde S, Büttner-Koch S, Plähn V, Bosy-Westphal A. Implementation of the Nutri-Score. *Ernährungs Umsch*. 2022;69(5):48-55.
5. Narayanan G, Giraudeau B, Molina V, Allais O, Soler LG. *Evolution Des Parts de Marché Des Marques Engagées Dans La Démarche Nutri-Score En France Entre 2018 et 2023*. INRAE; 2023:54 p. Accessed September 20, 2024. <https://hal.science/hal-04356926>
6. Mackay DS, Pakenham L, Mhurchu CN. Health Star Rating Label Uptake in NZ: Analysis in 2023 relative to target. Published online 2024.
7. Rebolledo N, Ferrer-Rosende P, Reyes M, Taillie LS, Corvalán C. Food Industry Compliance With the Display of Front-of-Package Warning Labels at the Final Phase (2020) of Chile's Labeling and Advertising Law. *Am J Public Health*. Published online September 26, 2024:e1-e8. doi:10.2105/AJPH.2024.307843
8. Morrison H, Meloncelli N, Pelly FE. Nutritional quality and reformulation of a selection of children's packaged foods available in Australian supermarkets: Has the Health Star Rating had an impact? *Nutr Diet*. 2019;76(3):296-304. doi:10.1111/1747-0080.12486
9. Song J, Brown MK, Tan M, et al. Impact of color-coded and warning nutrition labelling schemes: A systematic review and network meta-analysis. Ares G, ed. *PLOS Med*. 2021;18(10):e1003765. doi:10.1371/journal.pmed.1003765
10. Hagmann D, Siegrist M. Nutri-Score, multiple traffic light and incomplete nutrition labelling on food packages: Effects on consumers' accuracy in identifying healthier snack options. *Food Qual Prefer*. 2020;83:103894. doi:10.1016/j.foodqual.2020.103894
11. Andrews JC, Burton S, Kees J. Is Simpler Always Better? Consumer Evaluations of Front-of-Package Nutrition Symbols. *J Public Policy Mark*. 2011;30(2):175-190. doi:10.1509/jppm.30.2.175
12. Bustamante A, Beltrán L, Melgoza E, Méndez C. *Implementation Lessons from Latin America to Prevent and Reduce Childhood Obesity in the United States.*; 2023. <https://escholarship.org/content/qt379973rh/qt379973rh.pdf>
13. Pettigrew S, Jongenelis M, Maganja D, Hercberg S, Julia C. The Ability of Nutrition Warning Labels to Improve Understanding and Choice Outcomes Among Consumers Demonstrating

Preferences for Unhealthy Foods. *J Acad Nutr Diet.* 2024;124(1):58-64.e1.
doi:10.1016/j.jand.2023.08.135

14. Ares G, Antúnez L, Curutchet MR, Giménez A. Warning labels as a policy tool to encourage healthier eating habits. *Curr Opin Food Sci.* 2023;51:101011. doi:10.1016/j.cofs.2023.101011
15. Ganderats-Fuentes M, Morgan S. Front-of-Package Nutrition Labeling and Its Impact on Food Industry Practices: A Systematic Review of the Evidence. *Nutrients.* 2023;15(11):2630. doi:10.3390/nu15112630
16. Russell C, Dickie S, Baker P, Lawrence M. Does the Australian Health Star Rating System Encourage Added Sugar Reformulation? Trends in Sweetener Use in Australia. *Nutrients.* 2021;13(3):898. doi:10.3390/nu13030898
17. Bablani L, Mhurchu CN, Neal B, Skeels CL, Staub KE, Blakely T. The impact of voluntary front-of-pack nutrition labelling on packaged food reformulation: A difference-in-differences analysis of the Australasian Health Star Rating scheme. *PLOS Med.* 2020;17(11):e1003427. doi:10.1371/journal.pmed.1003427
18. Reyes M, Taillie LS, Popkin B, Kanter R, Vandevijvere S, Corvalán C. Changes in the amount of nutrient of packaged foods and beverages after the initial implementation of the Chilean Law of Food Labelling and Advertising: A nonexperimental prospective study. *PLOS Med.* 2020;17(7):e1003220. doi:10.1371/journal.pmed.1003220
19. Taillie LS, Bercholz M, Popkin B, Reyes M, Colchero MA, Corvalán C. Changes in food purchases after the Chilean policies on food labelling, marketing, and sales in schools: a before and after study. *Lancet Planet Health.* 2021;5(8):e526-e533. doi:10.1016/S2542-5196(21)00172-8
20. Fretes G, Corvalán C, Reyes M, et al. Changes in children's and adolescents' dietary intake after the implementation of Chile's law of food labeling, advertising and sales in schools: a longitudinal study. *Int J Behav Nutr Phys Act.* 2023;20(1):40. doi:10.1186/s12966-023-01445-x
21. Alcaire F, Machín L, Curutchet MR, Giménez A, Ares G. Parent Experiences With Warning Labels After Policy Implementation in Uruguay. *J Nutr Educ Behav.* 2023;55(11):823-832. doi:10.1016/j.jneb.2023.09.002
22. Shahrabani S. The impact of Israel's Front-of-Package labeling reform on consumers' behavior and intentions to change dietary habits. *Isr J Health Policy Res.* 2021;10(1):44. doi:10.1186/s13584-021-00482-w
23. Uribe R, Manzur E, Cornejo C. Varying the Number of FOP Warnings on Hedonic and Utilitarian Food Products: Evidence from Chile. *J Food Prod Mark.* 2020;26(2):123-143. doi:10.1080/10454446.2020.1738971
24. Correa T, Fierro C, Reyes M, Dillman Carpentier FR, Taillie LS, Corvalan C. "Responses to the Chilean law of food labeling and advertising: exploring knowledge, perceptions and behaviors of mothers of young children." *Int J Behav Nutr Phys Act.* 2019;16(1):21. doi:10.1186/s12966-019-0781-x

25. Taillie LS, Reyes M, Colchero MA, Popkin B, Corvalán C. An evaluation of Chile's Law of Food Labeling and Advertising on sugar-sweetened beverage purchases from 2015 to 2017: A before-and-after study. *PLOS Med.* 2020;17(2):e1003015. doi:10.1371/journal.pmed.1003015
26. Taillie LS, Bercholz M, Popkin B, Rebolledo N, Reyes M, Corvalán MC. Decreases in purchases of energy, sodium, sugar, and saturated fat three years after implementation of the Chilean Food Labelling and Marketing Law. Published online November 22, 2023;2023.11.21.23298789. doi:10.1101/2023.11.21.23298789
27. Paraje G, Montes de Oca D, Corvalán C, Popkin B. Socioeconomic Patterns in Budget Share Allocations of Regulated Foods and Beverages in Chile: A Longitudinal Analysis. *Nutrients.* 2023;15(3):679. doi:10.3390/nu15030679
28. Saavedra-Garcia L, Meza-Hernández M, Diez-Canseco F, Taillie LS. Reformulation of Top-Selling Processed and Ultra-Processed Foods and Beverages in the Peruvian Food Supply after Front-of-Package Warning Label Policy. *Int J Environ Res Public Health.* 2023;20(1):424. doi:10.3390/ijerph20010424
29. Taillie LS, Bercholz M, Popkin B, Rebolledo N, Reyes M, Corvalán C. Decreases in purchases of energy, sodium, sugar, and saturated fat 3 years after implementation of the Chilean food labeling and marketing law: An interrupted time series analysis. *PLOS Med.* 2024;21(9):e1004463. doi:10.1371/journal.pmed.1004463
30. Croker H, Packer J, Russell SJ, Stansfield C, Viner RM. Front of pack nutritional labelling schemes: a systematic review and meta-analysis of recent evidence relating to objectively measured consumption and purchasing. *J Hum Nutr Diet.* 2020;33(4):518-537. doi:10.1111/jhn.12758
31. Bertorello NB, Minin F, Viscardi S, et al. Effects of nutritional profile system and front labeling in food selection during purchases: a systematic review. *Arch Latinoam Nutr.* 2023;73(2):144-153. doi:10.37527/2023.73.2.006
32. Acton RB, Jones AC, Kirkpatrick SI, Roberto CA, Hammond D. Taxes and front-of-package labels improve the healthiness of beverage and snack purchases: a randomized experimental marketplace. *Int J Behav Nutr Phys Act.* 2019;16(1):1-15. doi:10.1186/s12966-019-0799-0
33. Arrúa A, Curutchet MR, Rey N, et al. Impact of front-of-pack nutrition information and label design on children's choice of two snack foods: Comparison of warnings and the traffic-light system. *Appetite.* 2017;116:139-146. doi:10.1016/j.appet.2017.04.012
34. Taillie LS, Hall MG, Popkin BM, Ng SW, Murukutla N. Experimental Studies of Front-of-Package Nutrient Warning Labels on Sugar-Sweetened Beverages and Ultra-Processed Foods: A Scoping Review. *Nutrients.* 2020;12(2):569. doi:10.3390/nu12020569
35. Franco-Arellano B, Vanderlee L, Ahmed M, Oh A, L'Abbé M. Influence of front-of-pack labelling and regulated nutrition claims on consumers' perceptions of product healthfulness and purchase intentions: A randomized controlled trial. *Appetite.* 2020;149:104629. doi:10.1016/j.appet.2020.104629

36. Hock K, Acton RB, Jáuregui A, Vanderlee L, White CM, Hammond D. Experimental study of front-of-package nutrition labels' efficacy on perceived healthfulness of sugar-sweetened beverages among youth in six countries. *Prev Med Rep.* 2021;24:101577. doi:10.1016/j.pmedr.2021.101577

37. Patino SRG, Carriedo Á, Tolentino-Mayo L, et al. Front-of-pack warning labels are preferred by parents with low education level in four Latin American countries. *World Nutr.* 2019;10(4):11-26. doi:10.26596/wn.201910411-26

38. Nieto C, Jáuregui A, Contreras-Manzano A, et al. Understanding and use of food labeling systems among Whites and Latinos in the United States and among Mexicans: Results from the International Food Policy Study, 2017. *Int J Behav Nutr Phys Act.* 2019;16(1):87. doi:10.1186/s12966-019-0842-1

39. Vargas-Meza J, Jáuregui A, Contreras-Manzano A, Nieto C, Barquera S. Acceptability and understanding of front-of-pack nutritional labels: an experimental study in Mexican consumers. *BMC Public Health.* 2019;19(1):1751. doi:10.1186/s12889-019-8108-z

40. Jáuregui A, White CM, Vanderlee L, et al. Impact of front-of-pack labels on the perceived healthfulness of a sweetened fruit drink: a randomised experiment in five countries. *Public Health Nutr.* 2022;25(4):1094-1104. doi:10.1017/S1368980021004535

41. *La Superioridad de Los Sellos Octagonales de Advertencia Nutricional En Panamá.* Organización Panamericana de la Salud; 2022. https://iris.paho.org/bitstream/handle/10665.2/56323/OPSNMHRF220026_spa.pdf?sequence=5&isAllowed=y

42. Khandpur N, de Moraes Sato P, Mais LA, et al. Are Front-of-Package Warning Labels More Effective at Communicating Nutrition Information than Traffic-Light Labels? A Randomized Controlled Experiment in a Brazilian Sample. *Nutrients.* 2018;10(6):688. doi:10.3390/nu10060688

43. Deliza R, de Alcantara M, Pereira R, Ares G. How do different warning signs compare with the guideline daily amount and traffic-light system? *Food Qual Prefer.* 2020;80:103821. doi:10.1016/j.foodqual.2019.103821

44. Arrúa A, Machín L, Curutchet MR, et al. Warnings as a directive front-of-pack nutrition labelling scheme: comparison with the Guideline Daily Amount and traffic-light systems. *Public Health Nutr.* 2017;20(13):2308-2317. doi:10.1017/S1368980017000866

45. Bandeira LM, Pedroso J, Toral N, Gubert MB. Performance and perception on front-of-package nutritional labeling models in Brazil. *Rev Saúde Pública.* 2021;55:19. doi:10.11606/s1518-8787.2021055002395

46. Ikonen I, Sotgiu F, Aydinli A, Verlegh PWJ. Consumer effects of front-of-package nutrition labeling: an interdisciplinary meta-analysis. *J Acad Mark Sci.* 2020;48(3):360-383. doi:10.1007/s11747-019-00663-9

47. De la Cruz-Góngora V, Torres P, Contreras-Manzano A, et al. Understanding and acceptability by Hispanic consumers of four front-of-pack food labels. *Int J Behav Nutr Phys Act.* 2017;14(1):28. doi:10.1186/s12966-017-0482-2

48. Roberto CA, Shivaram M, Martinez O, Boles C, Harris JL, Brownell KD. The Smart Choices front-of-package nutrition label. Influence on perceptions and intake of cereal. *Appetite.* 2012;58(2):651-657. doi:10.1016/j.appet.2012.01.003

49. Ducrot P, Julia C, Méjean C, et al. Impact of Different Front-of-Pack Nutrition Labels on Consumer Purchasing Intentions. *Am J Prev Med.* 2016;50(5):627-636. doi:10.1016/j.amepre.2015.10.020

50. Ducrot P, Méjean C, Julia C, et al. Effectiveness of Front-Of-Pack Nutrition Labels in French Adults: Results from the NutriNet-Santé Cohort Study. Gillison F, ed. *PLOS ONE.* 2015;10(10):e0140898. doi:10.1371/journal.pone.0140898

51. Ducrot P, Méjean C, Julia C, et al. Objective Understanding of Front-of-Package Nutrition Labels among Nutritionally At-Risk Individuals. *Nutrients.* 2015;7(8):7106-7125. doi:10.3390/nu7085325

52. Packer J, Russell SJ, Ridout D, et al. Assessing the Effectiveness of Front of Pack Labels: Findings from an Online Randomised-Controlled Experiment in a Representative British Sample. *Nutrients.* 2021;13(3):900. doi:10.3390/nu13030900

53. Devaux M, Aldea A, Lerouge A, Vuik S, Cecchini M. Establishing an EU-wide front-of-pack nutrition label: Review of options and model-based evaluation. *Obes Rev.* 2024;25(6):e13719. doi:10.1111/obr.13719

54. Grummon AH, Musicus AA, Moran AJ, Salvia MG, Rimm EB. Consumer Reactions to Positive and Negative Front-of-Package Food Labels. *Am J Prev Med.* 2023;64(1):86-95. doi:10.1016/j.amepre.2022.08.014

55. Roberto CA, Bragg MA, Seamans MJ, Mechulan RL, Novak N, Brownell KD. Evaluation of Consumer Understanding of Different Front-of-Package Nutrition Labels, 2010–2011. *Prev Chronic Dis.* 2012;9:E149. doi:10.5888/pcd9.120015

56. Lobstein T, Davies S. Defining and labelling 'healthy' and 'unhealthy' food. *Public Health Nutr.* 2009;12(3):331-340. doi:10.1017/S1368980008002541

57. Hall MG, Lazard AJ, Grummon AH, et al. Designing warnings for sugary drinks: A randomized experiment with Latino parents and non-Latino parents. *Prev Med.* 2021;148:106562. doi:10.1016/j.ypmed.2021.106562

58. Grummon AH, Ruggles PR, Greenfield TK, Hall MG. Designing Effective Alcohol Warnings: Consumer Reactions to Icons and Health Topics. *Am J Prev Med.* 2023;64(2):157-166. doi:10.1016/j.amepre.2022.09.006

59. Acton RB, Vanderlee L, Roberto CA, Hammond D. Consumer perceptions of specific design characteristics for front-of-package nutrition labels. *Health Educ Res*. 2018;33(2):167-174. doi:10.1093/her/cyy006
60. Cabrera M, Machín L, Arrúa A, et al. Nutrition warnings as front-of-pack labels: influence of design features on healthfulness perception and attentional capture. *Public Health Nutr*. 2017;20(18):3360-3371. doi:10.1017/S136898001700249X
61. Goodman S, Vanderlee L, Acton R, Mahamad S, Hammond D. The Impact of Front-of-Package Label Design on Consumer Understanding of Nutrient Amounts. *Nutrients*. 2018;10(11):1624. doi:10.3390/nu10111624
62. *Cigarette Package Health Warnings: International Status Report*. Canadian Cancer Society; 2023. <https://cdn.cancer.ca/-/media/files/about-us/media-releases/2024/international-warnings-report/ccs-international-cigarette-packaging-report-2023-english.pdf?rev=1f54942cb81c425fb3ce7ea5fa0b651d&hash=1A9499920811F15CA3D6F9AA6D4828D6>
63. Grummon AH, Hall MG, Taillie LS, Brewer NT. How should sugar-sweetened beverage health warnings be designed? A randomized experiment. *Prev Med*. 2019;121:158-166. doi:10.1016/j.ypmed.2019.02.010
64. Jáuregui A, Vargas-Meza J, Nieto C, et al. Impact of front-of-pack nutrition labels on consumer purchasing intentions: a randomized experiment in low- and middle-income Mexican adults. *BMC Public Health*. 2020;20(1):463. doi:10.1186/s12889-020-08549-0
65. White-Barrow V, Gomes FS, Eyre S, et al. Effects of front-of-package nutrition labelling systems on understanding and purchase intention in Jamaica: results from a multiarm randomised controlled trial. *BMJ Open*. 2023;13(4):e065620. doi:10.1136/bmjopen-2022-065620
66. Mora-Plazas M, Higgins ICA, Gomez LF, et al. Impact of nutrient warning labels on choice of ultra-processed food and drinks high in sugar, sodium, and saturated fat in Colombia: A randomized controlled trial. *PLOS ONE*. 2022;17(2):e0263324. doi:10.1371/journal.pone.0263324
67. Yadin S. Manipulating Disclosure: Creative Compliance in the Israeli Food Industry Misinformation, Disinformation, and the Law. *St Louis Univ Law J*. 2021;66(1):[xiii]-166.
68. Bialkova S, van Trijp H. What determines consumer attention to nutrition labels? *Food Qual Prefer*. 2010;21(8):1042-1051. doi:10.1016/j.foodqual.2010.07.001
69. Otterbring T, Shams P, Wästlund E, Gustafsson A. Left isn't always right: placement of pictorial and textual package elements. *Br Food J*. 2013;115(8):1211-1225. doi:10.1108/BFJ-08-2011-0208
70. Maalouf J, Cogswell ME, Bates M, et al. Sodium, sugar, and fat content of complementary infant and toddler foods sold in the United States, 2015, 1, 2, 3. *Am J Clin Nutr*. 2017;105(6):1443-1452. doi:10.3945/ajcn.116.142653

71. Erzse A, Marais NC, Hofman KJ, Christofides NJ. Evidence for high sugar content of baby foods in South Africa. *SAfr Med J.* 2019;109(5):328-332. doi:10.7196/SAMJ.2019.v109i5.13314
72. McCann JR, Russell CG, Woods JL. The Nutritional Profile and On-Pack Marketing of Toddler-Specific Food Products Launched in Australia between 1996 and 2020. *Nutrients.* 2022;14(1):163. doi:10.3390/nu14010163
73. Qazi N, Pawar M, Tharakan AP, Padhy P. Sugar and Salt Content of Commercially Available Infant Formulas and Baby Foods in the Indian Marketplace and its Comparison to the Recommended Intake Guidelines. *Indian J Community Med.* 2021;46(4):757. doi:10.4103/ijcm.IJCM_1_21
74. Dunford EK, Popkin BM. Ultra-processed food for infants and toddlers; dynamics of supply and demand. *Bull World Health Organ.* 2023;101(5):358-360. doi:10.2471/BLT.22.289448
75. Pries AM, Bassetti E, Badham J, et al. Ultraprocessing and presence of additives in commercially produced complementary foods in seven Southeast Asian countries: a cross-sectional study. *Am J Clin Nutr.* 2024;120(2):310-319. doi:10.1016/j.ajcnut.2024.04.003
76. Richter APC, Grummon AH, Falbe J, et al. Toddler milk: a scoping review of research on consumption, perceptions, and marketing practices. *Nutr Rev.* 2024;82(3):425-436. doi:10.1093/nutrit/nuad057
77. Pomeranz JL, Romo Palafox MJ, Harris JL. Toddler drinks, formulas, and milks: Labeling practices and policy implications. *Prev Med.* 2018;109:11-16. doi:10.1016/j.ypmed.2018.01.009
78. Richter APC, Duffy EW, Smith Taillie L, Harris JL, Pomeranz JL, Hall MG. The Impact of Toddler Milk Claims on Beliefs and Misperceptions: A Randomized Experiment with Parents of Young Children. *J Acad Nutr Diet.* 2022;122(3):533-540.e3. doi:10.1016/j.jand.2021.08.101
79. Duffy EW, Taillie LS, Richter APC, Higgins ICA, Harris JL, Hall MG. Parental Perceptions and Exposure to Advertising of Toddler Milk: A Pilot Study with Latino Parents. *Int J Environ Res Public Health.* 2021;18(2):528. doi:10.3390/ijerph18020528
80. C. Richter AP, W. Duffy E, Higgins ICA, et al. Toddler Milk Perceptions and Responses to Front-of-Package Claims and Product Warnings: A Qualitative Study of Caregivers of Toddlers. *J Acad Nutr Diet.* 2023;123(11):1568-1577.e3. doi:10.1016/j.jand.2023.06.281
81. Milosavljevic M, Koch C, Rangel A. Consumers can make decisions in as little as a third of a second. *Judgm Decis Mak.* 2011;6(6):520-530. doi:10.1017/S1930297500002485
82. Cohen DA, Babey SH. Candy at the Cash Register — A Risk Factor for Obesity and Chronic Disease. *N Engl J Med.* 2012;367(15):1381-1383. doi:10.1056/NEJMp1209443
83. *European Food and Nutrition Action Plan 2015–2020.* World Health Organization; 2015. <https://iris.who.int/bitstream/handle/10665/329405/9789289051231-eng.pdf?sequence=1&isAllowed=y>

84. Machín L, Curutchet MR, Gugliucci V, et al. The habitual nature of food purchases at the supermarket: Implications for policy making. *Appetite*. 2020;155:104844. doi:10.1016/j.appet.2020.104844

85. Alonso-Dos-Santos M, Quilodrán Ulloa R, Salgado Quintana Á, Vigueras Quijada D, Farías Nazel P. Nutrition Labeling Schemes and the Time and Effort of Consumer Processing. *Sustainability*. 2019;11(4):1079. doi:10.3390/su11041079

86. Campos S, Doxey J, Hammond D. Nutrition labels on pre-packaged foods: a systematic review. *Public Health Nutr*. 2011;14(8):1496-1506. doi:10.1017/S1368980010003290

87. Bhawra J, Kirkpatrick SI, Hall MG, Vanderlee L, Thrasher JF, Hammond D. Correlates of Self-Reported and Functional Understanding of Nutrition Labels across 5 Countries in the 2018 International Food Policy Study. *J Nutr*. 2022;152:13S-24S. doi:10.1093/jn/nxac018

88. Persoskie A. US Consumers' Understanding of Nutrition Labels in 2013: The Importance of Health Literacy. *Prev Chronic Dis*. 2017;14. doi:10.5888/pcd14.170066

89. Rothman RL, Housam R, Weiss H, et al. Patient Understanding of Food Labels: The Role of Literacy and Numeracy. *Am J Prev Med*. 2006;31(5):391-398. doi:10.1016/j.amepre.2006.07.025

90. Christoph MJ, Larson N, Laska MN, Neumark-Sztainer D. Nutrition Facts Panels: Who Uses Them, What Do They Use, and How Does Use Relate to Dietary Intake? *J Acad Nutr Diet*. 2018;118(2):217-228. doi:10.1016/j.jand.2017.10.014

91. Sinclair S, Hammond D, Goodman S. Sociodemographic Differences in the Comprehension of Nutritional Labels on Food Products. *J Nutr Educ Behav*. 2013;45(6):767-772. doi:10.1016/j.jneb.2013.04.262

92. Feteira-Santos R, Fernandes J, Virgolino A, et al. Effectiveness of interpretive front-of-pack nutritional labelling schemes on the promotion of healthier food choices: a systematic review. *JBI Evid Implement*. 2020;18(1):24. doi:10.1097/XEB.0000000000000214

93. Maubach N, Hoek J, Mather D. Interpretive front-of-pack nutrition labels. Comparing competing recommendations. *Appetite*. 2014;82:67-77. doi:10.1016/j.appet.2014.07.006

94. Talati Z, Pettigrew S, Ball K, et al. The relative ability of different front-of-pack labels to assist consumers discriminate between healthy, moderately healthy, and unhealthy foods. *Food Qual Prefer*. 2017;59:109-113. doi:10.1016/j.foodqual.2017.02.010

95. Egnell M, Talati Z, Hercberg S, Pettigrew S, Julia C. Objective Understanding of Front-of-Package Nutrition Labels: An International Comparative Experimental Study across 12 Countries. *Nutrients*. 2018;10(10):1542. doi:10.3390/nu10101542

96. Egnell M, Talati Z, Galan P, et al. Objective understanding of the Nutri-score front-of-pack label by European consumers and its effect on food choices: an online experimental study. *Int J Behav Nutr Phys Act*. 2020;17(1):146. doi:10.1186/s12966-020-01053-z

97. Cecchini M, Warin L. Impact of food labelling systems on food choices and eating behaviours: a systematic review and meta-analysis of randomized studies. *Obes Rev.* 2016;17(3):201-210. doi:10.1111/obr.12364

98. Talati Z, Egnell M, Hercberg S, Julia C, Pettigrew S. Food Choice Under Five Front-of-Package Nutrition Label Conditions: An Experimental Study Across 12 Countries. *Am J Public Health.* 2019;109(12):1770-1775. doi:10.2105/AJPH.2019.305319

99. Kroker-Lobos MF, Morales-Juárez A, Pérez W, et al. Efficacy of front-of-pack warning label system versus guideline for daily amount on healthfulness perception, purchase intention and objective understanding of nutrient content of food products in Guatemala: a cross-over cluster randomized controlled experiment. *Arch Public Health.* 2023;81(1):108. doi:10.1186/s13690-023-01124-0

100. Stern D, Tolentino L, Barquera S. *Revisión Del Etiquetado Frontal: Análisis de Las Guías Diarias de Alimentación (GDA) y Su Comprensión Por Estudiantes de Nutrición En México.* Instituto Nacional de Salud Pública; 2011. https://www.insp.mx/images/stories/Centros/cinys/Docs/120821_revisionEtiquetadoFrontal.pdf

101. Talati Z, Norman R, Pettigrew S, et al. The impact of interpretive and reductive front-of-pack labels on food choice and willingness to pay. *Int J Behav Nutr Phys Act.* 2017;14(1):171. doi:10.1186/s12966-017-0628-2

102. Temple NJ. Front-of-package food labels: A narrative review. *Appetite.* 2020;144:104485. doi:10.1016/j.appet.2019.104485

103. Boztuğ Y, Juhl HJ, Elshievy O, Jensen MB. Consumer response to monochrome Guideline Daily Amount nutrition labels. *Food Policy.* 2015;53:1-8. doi:10.1016/j.foodpol.2015.03.002

104. Kontopoulou L, Karpetas GE, Kotsiou OS, et al. Guideline Daily Amounts Versus Nutri-Score Labeling: Perceptions of Greek Consumers About Front-of-Pack Label. *Cureus.* 14(12):e32198. doi:10.7759/cureus.32198

105. Kaur A, Scarborough P, Rayner M. A systematic review, and meta-analyses, of the impact of health-related claims on dietary choices. *Int J Behav Nutr Phys Act.* 2017;14(1):93. doi:10.1186/s12966-017-0548-1

106. Aschemann-Witzel J, Hamm U. Do consumers prefer foods with nutrition and health claims? Results of a purchase simulation. *J Mark Commun.* 2010;16(1-2):47-58. doi:10.1080/13527260903342746

107. Hall MG, Lazard AJ, Grummon AH, Mendel JR, Taillie LS. The impact of front-of-package claims, fruit images, and health warnings on consumers' perceptions of sugar-sweetened fruit drinks: Three randomized experiments. *Prev Med.* 2020;132:105998. doi:10.1016/j.ypmed.2020.105998

108. Hall MG, Lazard AJ, Higgins IC, et al. Nutrition-related claims lead parents to choose less healthy drinks for young children: a randomized trial in a virtual convenience store. *Am J Clin Nutr.* 2022;115(4):1144-1154. doi:10.1093/ajcn/nqac008

109. Duffy EW, Hall MG, Dillman Carpentier FR, et al. Nutrition Claims on Fruit Drinks Are Inconsistent Indicators of Nutritional Profile: A Content Analysis of Fruit Drinks Purchased by Households With Young Children. *J Acad Nutr Diet.* 2021;121(1):36-46.e4. doi:10.1016/j.jand.2020.08.009

110. Schuldt JP, Muller D, Schwarz N. The “Fair Trade” Effect: Health Halos From Social Ethics Claims. *Soc Psychol Personal Sci.* 2012;3(5):581-589. doi:10.1177/1948550611431643

111. Schuldt JP, Schwarz N. The “organic” path to obesity? Organic claims influence calorie judgments and exercise recommendations. *Judgm Decis Mak.* 2010;5(3). Accessed February 25, 2022.
<https://www.proquest.com/docview/1011279493/abstract/EE03ECA0254E4EC6PQ/1>

112. Skubisz C. Naturally good: Front-of-package claims as message cues. *Appetite.* 2017;108:506-511. doi:10.1016/j.appet.2016.10.030

113. McKeon GP, Hallman WK. Front-of-Package Protein Labels on Cereal Create Health Halos. *Foods.* 2024;13(8):1139. doi:10.3390/foods13081139

114. Musicus AA, Hua SV, Moran AJ, et al. Front-of-package claims & imagery on fruit-flavored drinks and exposure by household demographics. *Appetite.* 2022;171:105902. doi:10.1016/j.appet.2021.105902

115. Mediano Stoltze F, Busey E, Taillie LS, Dillman Carpentier FR. Impact of warning labels on reducing health halo effects of nutrient content claims on breakfast cereal packages: A mixed-measures experiment. *Appetite.* 2021;163:105229. doi:10.1016/j.appet.2021.105229